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Abstract

The effect of refraction due to wind and temperature gradients on energy received

from low flying aircraft is examined. A series of helicopter and jet flyby's were recorded

with a microphone array on two separate days, each with distinctly different meteorological

conditions. Energy in the 100-200 Hertz band is shown as a function of aircraft range

from the array, and compared with the output of the Fast Field Program.

I. Introduction

This paper examines the effect of wind and temperature gradients on energy received

at a microphone array from a series of aircraft flyby's. Of interest is the energy contained

between 100 and 200 Hertz, the frequency band used in our acoustic detection and tracking
algorithms.

One aspect of this work is to estimate our ability to detect and track low flying

aircraft, or conversely, to assess the vulnerability of aircraft to acoustic detection and

tracking. Propagation characteristics, which are largely influenced by wind and

temperature gradients, must be taken into account if we are to make accurate predictions.

To illustrate the impact that wind and temperature gradients can have, received energy

as a function of aircraft range has been calculated from aircraft flyby's on two separate

days, each with distinctly different meteorological conditions. Sound speed profiles,

derived from wind and temperature data collected during the experiments, are used to

generate ray plots. Visualization of the ray paths helps to explain features seen in the

experimental data.

To predict detection range or tracking ability for a given set of meteorological

parameters, we must estimate acoustic energy as a function of distance from the source. To

this end, the output of a propagation model, the Fast Field Program, is compared to the

experimental results.

* This work was sponsored by the Department of the Air Force.
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II. Experiment

Aircraft flyby's, depicted in Figure 1, were recorded on two different days

(designated as Day 1 and Day 2). Results presented here are from a helicopter on Day 1,

and a jet aircraft on Day 2. Both aircraft flew in a straight line at a constant altitude past a

nine element microphone array. Ground truth TSPI (Time SPace Information) of the

aircraft's position and velocity, corrected for acoustic propagation time, was also recorded

during each flyby. Details are given in Table 1.

Array data were sampled at 2048 samples/second during the experiment and recorded

directly to magnetic tape. The array consisted of nine GenRad 1962-P42 microphones with

standard Sennheiser windscreens. Microphones were placed in notched wooden blocks on

the ground in a tri-delta configuration (reference 1). The array was used with a wideband

direction finding program (reference 2) to aid in determining whether received energy was

signal from the aircraft, or noise. This is discussed further in Section IV.

Meteorological data (temperature, wind speed and direction, and relative humidity)

were recorded to a height of 300 meters before and after the experiment using a tethered

balloon. These parameters were also recorded on the ground throughout both

experiments. Meteorological data were stored every 10 seconds during the experiment.

The wind was from the South (190 degrees) on Day 1, and from the North (15 degrees) on

Day 2. Headings of 345 and 165 degrees put the aircraft approximately into the wind, or
with the wind.

The helicopter was louder when it was inbound to the array, so only incoming

portions of the helicopter data are analyzed. There were two runs incoming from the North

(345 degrees), and two runs incoming from the South (165 degrees). The closest point of

approach (CPA) from each direction was 90 and 230 meters.

The jet was louder outbound from the array, so only outgoing portions of those runs

are used. Three runs outgoing to the North (345 degrees), and three runs outgoing to the

South (165 degrees) are analyzed. The CPA for these runs varied from 140 meters to 716
meters.

III. Data

Array data

The array time series for one of the helicopter runs at its CPA is shown in Figure 2a.

This same time series is displayed in Figure 2b after bandpass filtering between 100 and

200 Hertz. The spectra from two of the channels are shown in Figure 3. These spectra

show the strong harmonic structure that is typical for helicopters.

166



Array timeseriesfor thejet areshownin Figures4aand4b. Thejet spectrumfrom
twoof thechannelsareshownin Figure5. Thesefiguresillustratethebroadbandspectra
thatis typicalof jets.

Thedropin power levelin bothFigures3 and5 at about750Hertzis dueto the
antialiasingfilter. A risein energybelow 50Hertzin thespectraof Figure5 isdue
to wind noise.

Environmental data

Meteorological data collected from a tethersonde was used to calculate sound speed as

a function of height. Data taken during one of the balloon raisings on Day 1 is shown in

Figure 6. There was a normal temperature lapse above 50 meters, with the wind out of the

South. Sound speed profiles for Day 1 at 345 degrees (looking North of the array) and

165 degrees (looking South of the array) are shown in Figure 7.

On Day 2, the wind was from the North (Figure 8). The wind speed initially

increased up to 70 meters, then decreased with height, up to 300 meters. This unusual

wind profile, along with a temperature inversion, led to the sound speed profile in figure 9.

IV. Analysis

Energy as a function of range

Received energy is calculated for each one-second segment (2048 points) of the array

time series. This corresponds to a spatial average of about 30 meters for the helicopter, and

240 meters for the jet. The power spectrum for each channel is first calculated using a

Hanning window and 2048 point fit's. After integrating the power spectra between 100

and 200 Hertz, the values for all channels are averaged. The level calculated for that one-

second segment is then matched to the corresponding TSPI range, yielding energy received

at the array when the aircraft was at that particular range.

Separating signal from noise

It is not always clear if acoustic energy received at a microphone is signal from an

aircraft, or wind noise. Whether it is signal or noise will depend upon the propagation

conditions (for example, the presence of a shadow zone), the level of wind noise, and the

distance from the aircraft to the microphone. Discriminating between signal and noise is

important when comparing the output of a propagation model to experimental data; we do

not want to ascribe propagation effects to our experimental data when no signal is there to

model. To ensure that we were only looking at signal from the aircraft, the array time

series was used with a wideband direction finding algorithm (reference 2) to classify the

received energy as signal or noise.

The direction finding algorithm outputs the energy arriving along a specified number

of directions. The direction from which the maximum energy arrives is the detected azimuth

of the source. Energy and azimuth pairs for other directions are output in order of
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decreasing received energy. For energy to be selected as signal from the aircraft, we

require the detected azimuth to be close to the azimuth reported by the TSPI (ground truth)

data. In addition, we require that energy coming from the direction of the detection be

larger than energy coming from other directions, otherwise we are probably measuring

ambient noise. All energy versus range data reported in the next section have been

screened using the above criteria.

Received energy data

To help in understanding features in the received acoustic energy data, raytraces were

calculated (reference 3) using the sound speed profiles from Figures 7 and 9, and are

shown along with the energy versus range plots. The ray plot for the case when the

helicopter was incoming from the North on Day 1 (calculated from the sound speed profile

in Figure 7a) is shown in Figure 10a.

If the aircraft is considered to be at zero range and an altitude of 40 meters on the ray

plot, then the number of rays intersecting the ground at any range gives an indication of the

acoustic energy that would be received at that distance from the aircraft. Since the sound

speed decreases with height (Figure 7a), rays leaving the aircraft bend upward, and a
shadow zone is formed at about one kilometer from the source.

The received acoustic energy as a function of range for runs in which the helicopter

was incoming from the North is given in Figure 10b. Each data point represents the energy

averaged over one second in the 100 - 200 Hz. band. To provide a reference, a solid curve

representing spherical spreading is shown along with the experimental data. As suggested

by the raytrace, there is a larger decrease in received energy than predicted by spherical

spreading past one kilometer, where the shadow zone begins. Note that the energy level

drops significantly in the shadow zone, but does not go to zero, as ray theory predicts.

The raytrace and energy plot for runs in which the helicopter was incoming from the

South are shown in Figure 11. In this case, the sound speed increased with height (Figure

7b), causing the rays to be bent downward. Energy received past about one kilometer is

less than that predicted by spherical spreading since much of the energy is refracted

downward at short ranges; rays are more spread out at longer ranges than would be the

case for spherical spreading. Other factors, such as directivity of the source, and the

ground effect, are likely to be present as well.

The raytrace (calculated from the velocity profile in Figure 9a) and energy plot for

outgoing runs to the North on Day 2 (jet) are given in Figure 12. The raytrace suggests a

received energy somewhat higher than indicated by spherical spreading at short ranges

where the rays are refracted downward, and less received energy at longer ranges where

the rays are refracted upward. Comparison of the experimental data and the spherical

spreading curve shows this to be the case.

When the aircraft was South of the array, an initial decrease in sound speed up to 80

meters in height (Figure 9b) caused shallow angle downgoing rays to be bent upward,
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creating a small shadow zone. Past 80 meters, there was a general increase in sound speed

with increasing height, which caused the rays to be bent downward. The steep drop in

received energy (Figure 13b) between one and three kilometers corresponds to the shadow

zone seen in the raytrace. There is an increase in energy between four and six kilometers as

rays leaving the source with an upward angle were refracted back downward.

V. Comparison with FFP

Sound speed profiles in Figures 7 and 9 were used as input to the Fast Field Program

(references 4-6). As seen in Figures 14 and 15, agreement between the model output and

general features in the experimental data is quite good. In particular, note that the FFP

output closely models the experimental data in the shadow zones seen beyond one

kilometer in Figure 14a, and between one and three kilometers in Figure 14b.

VI. Summary

Measurements of acoustic energy from a series of aircraft flyby's were presented.

Features in the experimental data were explained in terms of the propagation characteristics

present at the time. Sound speed profiles, from meteorological data taken during the

experiment, were used as input to the Fast Field Program. The FFP was seen to provide

an excellent prediction of the general features found in the experimental data. The large

difference between the experimental results and simple spherical spreading emphasizes the

need for accurate and detailed meteorological data.
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Table 1.

Day Heading Velocity Wind speed Wind direction

(degrees) (m/see.) (rn/sec.) (degrees)
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Figure 1. Aircraft flyby.
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Figure 12. Jet outgoing to the North (Day 2).
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Figure 14. Comparison of Day 1 experimental data with the FFP.
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Figure 15. Comparison of Day 2 experimental data with the FFP.
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